NEXT-GENERATION BIOSPECIMEN PRESERVATION AT AMBIENT TEMPERATURE BASED ON THE USE OF MICRON-SCALE SCAFFOLDS

Michael Hogan, Ferdinand Stupka, Katy Metz, Lily Wong & Dennis Harris

IntegenX Corporation, Pleasanton CA

IntegenX Products for Ambient Temp BioSample Preservation

- IntegenX has Developed Multiple Products for Dry, Ambient-Temp Biosample Preservation
 - GenTegra-DNA Purified DNA
 - GenTegra-RNA Purified RNA
 - GenPlates Raw Blood, for DNA Purification (GE-FTA)

- All Current IntegenX Products are Based on Similar Principles
 - Preservation by Air-Drying
 - Addition of Chemical Stabilizers (Nuclease and Oxidation)
 - Solid Physical Matrix as a Sample Support

The DARPA "Matrix-Chaperone" Project

- Recent DARPA & DHS Funding has Allowed Development A New BioSpecimen Technology: "Matrix Chaperone"
 - Raw Samples Collected in the Field or in a Clinic
 - DNA, RNA, Small Molecule & Protein Analytes
 - Materials Science → "Matrix"
 - Self-Contained Collection, Shipping & Storage Device → "Chaperone"

The Matrix-Chaperone Concept

- Apply a Raw BioSample to a Wafer of Porous Matrix
- Instantaneous Wicking of the BioSample into the Wafer
- Instantaneous Saturation of the Wicked BioSample with Stabilizers
- Immediate Enclosure within the Chaperone Tube
- In Situ Physical Desiccation
- Multiple Form-Factors: Compatible with the Bench or Autonomous Devices

Matrix-Chaperone: Matrix in The Cap Desiccant in the Body of Cylindrical Chaperone

Matrix-Chaperone Concept

Matrix-Chaperone (Sealed)

Matrix-Chaperone Concept

Matrix-Chaperone is Flexible: Multiple Routes to Sample Recovery

Three Classes of Porous Matrix: Rehydration and Recovery

MicroCrystal Dissolve

MicroSphere Fluidize Spheres

Elastomer Squeeze

All Three Matrices have Common Properties

- Pore size: 500uM
- Open Pores
- Form into Wafers
- Inexpensive and Scalable to Mass Production

MicroCrystal & MicroSphere Molded into Porous Wafers with a Bonding Agent

Randomly-Packed
Spheres or Cuboids
Pore Size @ ½ Diameter
Pore Volume @ 1/π Volume

1,000um

MicroCrystals
Water-Soluble
Bond into Wafers
With Water & Stabilizer

MicroSpheres
Plastic
Bond into Wafers
With Water & Stabilizer
& Bonding Agent

Elastomer Wafers Fabricated by Dye Cutting

Elastomeric Foams have Tube-Like Pores 3D Honeycomb "Bubbles" Fuse to Forming 3D Polygons

Pore Model From Tomography

Elastomer Data, SEM

Flexibility Resulting from the Three Different Matrices

Elastomer

- Swabs, Collect up to 1mL
- Sample Collection from Surfaces and Cavities (Nares, Throat, Cheek)
- Recovery by Mechanical Compression

MicroCrystal

- Fluid, Collect up to 1mL
- Sample Collection from Finger-Prick, Heel-Prick, Eye-Dropper, Pipettes
- Recovery by MicroCrystal Solvation

MicroSphere

- Fluid, Collect up to 1mL
- Sample Collection from Finger-Prick, Heel-Prick, Eye-Dropper, Pipettes
- Recovery by MicroSphere Suspension

Flexibility Resulting from Chaperone Design

- Size and Shape Can be Altered as Needed
 - Range of Wafer Volume from 50uL to 1,000uL
- Matrix-Chaperone Assembly is Simple & Inexpensive
 - MicroCrystal & MicroSphere: Added like Gun-Powder in a Shell
 - Elastomer: Added like a Cork
 - Desiccant: Added like Gun-Powder in a Shell
- Matrix Chaperone Compatibility with Labelling Technologies
 - 2D Bar-Code, RFID,GPS
- Matrix-Chaperone Compatibility with Downstream Analysis
 - Manual Recovery at Lab Bench
 - Automated Recovery at Lab Bench
 - Direct Coupling to Autonomous Devices: Jump-Drive Model

Plastic Chaperone, 600uL Matrix MicroSphere or MicroCrystal

Plastic Chaperone, 600uL Matrix 6cm Elastomer-Swab

Aluminum Chaperone, 600uL Matrix: MicroCrystal & MicroSphere

Anodized Aluminum Chaperone, 600uL Elastomer "Mini Swab"

Chemical Treatment Optimization (Blood DNA)

- 200uL Matrix Wafers used for Screening
- Add 50uL of Bonding Agent-Stabilizer
- Add 50uL of Raw Blood
- Air Dry with desiccant
- Apply 3-Day Extreme Heat Protocol:
- 1 day 37C
- 1 day 56C
- 1 day 37C
- Rehydrate by adding 200uL H2O
- Purify DNA→ Analyze

Blood DNA Recovery: STD 3-Day Heat Protocol

2.4 kb "Long" mt-DNA QC Test

MicroSphere Matrix

Lane	Top Row:	Bottom Row:
1	1 Kb DNA Extension Ladder (Invitrogen)	1 Kb DNA Extension Ladder (Invitrogen)
2	Roche Control DNA (100 pg)	Roche Control DNA (100 pg)
3	Roche Control DNA (50 pg)	Roche Control DNA (50 pg)
4	Roche Control DNA (25 pg)	Roche Control DNA (25 pg)
5	Blood Incubated w/o Matrix (100 pg)	Chemical Treatment 8 (100 pg)
6	Chemical Treatment 1 (100 pg)	Chemical Treatment 9 (100 pg)
7	Chemical Treatment 2 (100 pg)	Chemical Treatment 10 (100 pg)
8	Chemical Treatment 3 (100 pg)	Chemical Treatment 11 (100 pg)
9	Chemical Treatment 4 (100 pg)	Chemical Treatment 12 (100 pg)
10	Chemical Treatment 5 (100 pg)	Negative Control (not shown)
11	Chemical Treatment 6 (100 pg)	
12	Chemical Treatment 7 (100 pg)	

Preliminary Conclusions (Feb 2012) Raw Blood → **DNA**

Multiple Matrix-Stabilizer Combinations Work for Blood DNA

- All Three Matrices
- Ordinary DNA Purification (Qiagen)
- >90% DNA recovery, $A_{260}/A_{280} > 1.8$
- DNA supports qPCR (no measurable inhibitors)
- DNA intact to >2.4kb (Long mtDNA PCR)

In-Progress for DNA (March)

- More Rigorous Heat Test Model (2d@37C, 2d@56C, 2d@37C)
- Pick Candidates to proceed to RNA & Protein

Next Steps (April-June)

Design and Manufacture of Chaperone Prototypes

- Scale-up: Plastic Chaperone (5,000)
- Scale-up: Aluminum Chaperones (5,000)

Stabilization Chemistry Optimization

- Blood RNA
- Few Blood Proteins: IgA, IgG, IgM
- Virus: Avian influenza virus (AIV) and exotic Newcastle disease virus (ENDV) Stabilization of Viral RNA and Host Igs

Acknowledgements

- DARPA BAA-11-38 ADEPT: DxOD-PoC (2011)
 Matrix-Chaperone Materials Science Development
 - Dennis Harris, D.Phil, Katy Metz, Lily Wong (IntegenX)
- DHS FAZD Center Grant (2011)
 Matrix-Chaperone Development for Viral Field Collection
 - Tammy Beckham DVM, Ph.D, Dr Blanca Lupiani, PH.D (Texas A&M)
 - FAZD (Foreign Animal and Zoonic Disease, DHS National Center)
- NCI R21 IMAT (2011)
 Apply Matrix Chemistry to "Natural" Porous Materials
 Stabilize DNA & RNA during Formalin Fixation
 - Professor Margaret Gulley, MD
 - UNC Department Laboratory Medicine

Matrix-Chaperone Questions & Comments???

We are Actively Recruiting Collaborators for Summer (2012)

- Small Molecules, Metabolites, Cancer Biomarkers Drs. Joshua Miller & Paul Luciw Professors, Dept. Pathology & Laboratory Medicine, UC Davis
- Collection and Preservation of Live FMDV & Other Virus Dr. Luis Rodriguez Research Leader, Plum Island National Labs
- If you have Interesting Ideas, Samples, Biomarkers Please Contact Us to Discuss Collaboration

Mike Hogan **VP Research, IntegenX** MikeH@integenX.com

